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Today’s learning targets

e Relation between decay width and cross section using Fermi’s Golden rule

 Calculate cross section for 2 — 2 scattering in the center of mass and laboratory frames






Cross section

» Consider a single particle of type a with velocity v,, traversing a A

region of area A containing n; particles of type b per unit volume ®

* In time 6t a particle of type a traverses a region containing 6N = n, (v, + v,)Adt particles of type b

* Interaction probability obtained from the effective cross-sectional area occupied by ny (v, + v,)Adt

particles of type b:

SNo ny,(v, + vp)Adto
OP = = y = n,voto v = (v, +Up)

: : dpP
* = rate per particle ais 1, = — = npvo



Cross section

* Consider a volume V, where the total reaction rate, R, is

R = (npvo) - (ngV) = (npV)(nqv)o = Nppao



Cross section definition

Incident flux = number of incident particles/unit area/unit time

* The “cross section”, g, can be thought of as the effective cross-sectional area representing the size of the target object that

the incoming particles must hit for the interaction to occur

* |tis a measure of the probability of the interaction

* |In general, this has nothing to do with the physical size of the target although there are exceptions, e.g. neutron absorption



Differential cross section

do number of interactions per unit time per target into a solid angle dQ

dQ incident flux

integrate over all do
: o ——d)
other particles dQO




Cross section calculation

Consider scattering process 1 + 2 — 3 + 4

Start from Fermi’s Golden Rule:

2 d°ps d’ps
l_‘fl = (Zﬂ)4f|Tfl| 5(E1 + E2 _ E3 _ E4)53(p1 + P2 —P3 — p4) (27_[)33 (27_[)43 (1)

Here Ty; is the transition matrix for a normalization of 1 particle per unit volume

Rate/Volume = (flux of 1) X (number density of 2) X = ny(v{ + vy)n,o

v1+7]2

For 1 target particle per unit volume, the rate is: (v; + v;)0 = 0 =

2 4
o= ( (2m) )f 6§(Ey + E; —Es —E )6°(p1 + D2 — D3 — Ps) (2)



Cross section calculation

To obtain Lorentz-invariant form we start by using wave functions normalised to 2E particles per unit

volume: ¥' = V2E V¥

Again define Lorentz-invariant matrix element |Mfl-| = \/ 2E12E,2E5 2E4|Tfl-|

B (2m)~*
-~ 2E.2E,(vy +v,)

d3ps d3p,
2E, 2E, (3)

2 — — — —
o f|Mfi| 85(Ey +E, —E3 —Ey)8%(py + p2 — P3 — Da)

The integral is now written in Lorentz-invariant form

The quantity F = 2E;2E,(v; + v;,) can be written in terms of a scalar product of 4-vectors and is also LI

F = 4J (0"py.) — mim3 4)

— the cross section is a Lorentz invariant quantity



Two special cases of Lorentz-invariant flux

1. Center-of-Mass frame (CoM):

F - 4E1E2(U1 + Uz)

S p*
AE,E, ( a EZ)
= 4p*(E, + E1)

= 4p™Vs

2. Target particle (particle 2) at rest:

F =4E,E,(v; + vy)
= 4E,m,v,
_ 4E;m;|pq|
Eq
= 4m,|p,|




2 — 2 body scattering in CoM frame " 3

* We will apply the Lorentz-invariant formula for the interaction cross section to the most common cases

* 2 - 2 body scattering in the CoM frame:

(2m) 2 d*ps d°p,
= Mc¢; 5 Ei+E,—E;—E;)53
« Wecanusep; +p, =0and E; + E, = +/s
(2m)~* ps3 d>py
= Me; |6 E; —E,)6°
0= A [ Mrf*8v5 - B - 635 + L T 6)



2 — 2 body scattering in CoM frame

 The integral is exactly the same as in the particle decay calculation but with m; replaced by /s

* 2 - 2 body scattering in the CoM frame:

e lEl [ e
= e s | Pl a0



2 — 2 body scattering in CoM frame I e~ e 3

* Elastic scattering;: p_:‘) = Ef
2 4 +
K h 4
1 2
Oelastic — 647‘[25j|Mﬁ| d() (8)

* For calculating the total Lorentz-invariant cross section, the result from the previous page is sufficient

* not so useful for computing the differential cross section in a rest frame other than CoM

* dQ* = d(cosf*)d¢" refers to the angles in CoM frame

1 |py 2 9)
do = Me;| dQ”
? = an?s oF [M]
l

* We would need to find a Lorentz-invariant expression for do



2 — 2 body scattering in CoM frame

* Express d(1* in terms of the Mandelstam t:

* t=¢q°=(p1 —p3)* =mi+m;—2p; D3

e In CoM frame:

p," = (E1,00,

*

« dQ* = d(cos 6*)do™ =

pi" - v = E{E; — Ipillp3lcos6”
t =m? +m5 — 2E;E; + 2|p;||p3|cosB*

= dt = 2|p1llp3ld(cos6”)

p—f )/ P;M = (E;‘, p—’gk) sinf6*, 0, p_g cos@*)
dtd¢*
2|p7||p3]
do = — |Mfl-|2dtdqb*

(10)

14



2 — 2 body scattering in CoM frame

» Finally, integrating over d¢*(assuming no ¢* dependence on |My; |2

do 1 2
T 7 [ Mri|

—_—

p1 (1)

641 s

 All quantities at Lorentz-invariant and therefore it applies to any rest frame

p1| is constant fixed by energy-momentum conservation

2

Bl = Z1s - Omy +mp)2ls - (my —my)?)

%
P1

* Example of how to use do/dt: consider elastic scattering in the lab. frame where we can neglect the mass of

* = (s — m2)2/(4s)

%
P1

the incoming particle (e.g. electron or neutrino scattering):



2 — 2 body scattering in laboratory frame

* The other commonly occurring case is scattering from a fixed target in a laboratory frame (e.g electron-

proton scattering)

 Take the case of elastic scattering at high energy where the mass of the incoming particles can be

neglected: m; =m3 =0,my, =my =M

1 e~ e— 3

* Express the cross section in terms of the scattering angle of the e™: dQ = 2md(cos0)

da_dadt_l dt do
dQ dtdQ 2md(cosH) dt

(13)
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2 — 2 body scattering in laboratory frame

« Four-momenta of the particles

* P1 = (Elr Or Or El)

pZ — (M) 0; 010)

p3 = (E3, E3sind, 0, Ezcos0)

p4 = (54;274)
c =t=(p— Ps)z = —2p1p3 = —2E1E3(1 — cos 0)

« From (E,p) conservation p; + p, = p3 + p4 We can express t in terms of p, and p,
* t=(p; —ps)® =2M? = 2ME, = —=2M(M — E,) = —2M(E; — E3)

 E; is constant (the energy of the incoming particle):

dt dE;
= 2M
d(cosf) d(cosf)

(14)



2 — 2 body scattering in laboratory frame

* Equating the two expressions for t we get

E4M
E3 ~ M+E{—E;cosf
. dE;  _ E}M _ p2ag (B3 \* _ E2
d(cos®) (M+E,—E,cos0)2 1M (ElM) M
de 1 dt do 1 EZdo E2do EZ
g =_—2M—>— =" = : M| (15)
dQ 2md(cosf) dt 2m Mdt mdt 16m?(s— M?)?
« Using s = (py + p2)? = M? + 2p, - p; = M? + 2ME,, as pi = 0, gives (s — M?) = 2ME;
dO- 1 E3 2 2
T = 6472 (MEl) |Mfl-| (in the limit of m; — 0) (16)



2 — 2 body scattering in laboratory frame

ME,
M+E;(1—cos0)

* Express E3 as a function of 6: E3 =

do 1 1 S
= M;; 17
dQ) 642 (M + E{(1 — cosH)) | fl| (17)
* General form of 2 — 2 body scattering in the lab frame in case the mass m; can't be neglected
do 1 1 p31° 2
| Myi| (18)

dQ  64m? Ip1Im4 |P_3>|(E1 +my) — E3|ﬁ|C059

* There is only one independent variable: the angle 6, from conservation of energy:

(Bmy) = |31 +m3 + [Ipi1? + (531 = 21Fillpslcosd + m3



Summary

* We used a Lorentz-invariant formulation of Fermi’s golden rule to derive decay rates and cross sections

» Expressed in the Lorentz-invariant Matrix Element (wave-functions normalised to 2E /unit volume)
* Particle decay width:

Ip*| >
[ = Me:| dQ) 19
32m2m? | fll (19)

*

P = ZLmL\/ |m? — (my + my)?%|[m? — (m; — m,)?|(function of the mass of the particles)

* Scattering cross section in CoM frame:

__1 |p7
~ 64n%s |p;”

. j IM|? ds (20)

20




Summary

e Invariant differential cross section valid in all frames:

do _ 1 f|M |2

1
2 - E[S — (my + my)?][s — (my — my)?]

%
b;

 Differential cross section in the lab. frame (m; = 0):

do 1 (E3

B do 1 ( 1
dQ  64n? \ME,

? 2 2 2
) |Mﬁ| = dQ  64m2 \M + E;(1 — cosH)) |Mﬁ| (22)

 Differential cross section in the lab. frame (m; # 0):
do 1 1 ps1°
dQ  64n? |p{Imy |ps|(E1+m;) — E3|pylcoso

2
| M| (23)

(E1+my) = \/IE’IZ +m3 + \[Iﬂlz + |p31% — 2|p1l|p3lcosd + m3



Examples: relativistic Rutherford cross section

Need to get a differential cross section in the lab frame with a massless incident particle M > E; (Eq. 22)

do 1 5
dQ - 64172 M2 |Mfi| (24)
using
[Mpi|* = (2B, - 2M - 2E5 - 2M)| Ty | (25)
do 16M?*E E; 2 E? 5
— A0 64m? M2 Trl” = (21)? T (26)

Hamiltonian for a Coulomb potential: H = e¢(x)
Initial and final state wave function are plane waves: |¥;) = e 'P1%, |q1f> = e P3X

Matrix element T;:

T = (Y |H|Y;) = fei'p?x edp(x)e™Prxd3x (27)



Examples: relativistic Rutherford cross section

* Define momentum transfer as q=7p3— P

Tfi = (qulﬁ'q]l) = e fqb(x)eiq'xd?’x (28)
* use
eld* = Iqlz - V2e~'* and [(uV?v — vV?u) d3x = 0 (Green’s theorem)  (29)
Tfi — |q|2 f(qub(x))e qudS (30)
» From Poisson equation: V¢ (x) = —p(x), where p(x) = Zef (x) is a static potential with a normalisation

condition [ f(x)d3x = 1

At/
lq|?

Ty = Jf(X)e_iq'x d*x (31)



Examples: relativistic Rutherford cross section

Definition: F(q) = [ f(x)e™'* d3x is the Fourier transformation of the charge function f(x), called also

a Form Factor (FF) of the charge distribution
The FF contains all the information about the spatial distribution of the charge of the studied object
In our case we replace it with a delta function F(q) = 1

This gives for the matrix element simply:

B At

T — (32)
AVIE
So the Rutherford cross section becomes:
2 2 2 212
do _ E Atz B 47“a“E (33)
dQ  (2m)21 [q]? lq|*




Examples: relativistic Rutherford cross section

¢ Quantum Field theory: the electron interacts with a nucleus (charge = Ze) via the exchange of a photon
* photon momentum: g =p —p’

* de Broglie wavelength: A = 1/|q|

* If Ais large, the internal structure of the nucleus can not be resolved and can be considered as a point-

like object (that is what we assumed so far in our calculations)

\l"fap,

\lji ,p 25



Particle accelerators: motivations

* Accelerators serve as “microscopes”
* |qgl =1GeV = A = 1.2x1071> m — size of a proton
* gl =10° GeV = A = 1.2x107'8 m — size of a proton substructure (e.g. quarks)

* = accelerators allow us to look for the substructure of particles

* Types of operation modes:
of mass m, beam with energy E:+/s ~ V2mE

with two beams of energy E:+/s = 2E

« Example: collider with two 22 GeV (1 TeV) beams gives the same center-of-mass energy as a fixed

target with a beam of 1 TeV (103 TeV)

* When looking for massive particles produced in the interactions, aim for the highest energy possible

and the collider mode is the more appropriate one



Particle accelerators: luminosity

* Luminosity (£) is the exposure of the target (beam) to scattering (collision) per unit time and unit area

* Fixed target experiments

« L = fluxXnumber of scattering centers = ®, XN, = n,Xv, XN,

* Colliding beams

e L= n“jfnbbf, where A = 4mo,0,

* here n; is the number of particles per bunch, b is the number of bunches, f is the frequency of the orbit

* typical beam size of the LHC o0, = g, ® 15um

« The number of produced events for a process with cross section o is:

N = LintXO-, Lil’lt — fL dt



LHC: instantaneous luminosity £

Peak instantaneous luminosity :

Peak delivered luminosity (Hz/u:b)

Data included from 2010-03-30 11:22 to 2022-10-15 17:48 UTC
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LHC: integrated luminosity Ly
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LHC: example production cross section

* Ny = Lincoi®! = 20 - 100 - 102 (with ol'®! = 100mb) cross section at 13.6 TeV

. ) _ proton - (anti)proton cross sections
W boson (leptonic decays): 63000 pb ¢ ey 1

* Z boson: Z — pu: 2103 pb

tt: 920 pb

gluon fusion Higgs production: 53 pb

ttH: 600 fb

HH: 34 fb

o (nb)

« How many given interactions did LHC produce in 20227

e assume £ = 20fb™1?

Vs (TeV)
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Summary of Lecture 5

Main learning outcomes
* How to deal with kinematics of cross sections
* The fundamental particle physics is in the matrix element

* The above equations are the basis for all calculations that follow



Additional slides: Dirac 6 —function

* In the relativistic formulation of decay rates and cross sections we will make use of the Dirac d

function: “infinitely narrow spike of unit area”

3()6 — (1) ! j_oo5(x —a)dx =1

f(x)

: | 7086 -ayax = f@
a X %

* Any function with the above properties can represent §(x), e.g.:
xZ
o)

Infinitesimally narrow Gaussian

0(x) = lim ==

32



Additional slides: Dirac &6 —function of a function

» An expression for the § —function of a function §(f (x)): / (x)

e start from the definition of a § —function:

Y2 (1 ify, <0<y, el
Ll o)ay = {0 otherwise 5(f(x))4

* Now express in terms of y = f(x), where f(xy) = 0 and change variables X0

sz 5(f(x))%dx _ {1 lf X1 <0< X2

X 0 otherwise
1
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Additional slides: Dirac &6 —function of a function

« From the properties of a 6 —function (i.e. only non-zero at x)

d X5 .
‘d_fCLlS(f(x))dxz{l le1<O<X2

0 otherwise

* Rearranging and expressing RHS as a 6 —function

1

X 1 X2 d -
S(f(x)dx = =5=—| &0 —xp)dx = 6(f(x)) = & §(x — xg)
X1 ‘ﬁ X1 dx X0
dx

X0



