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Today’s learning targets

• Relation between decay width and cross section using Fermi’s Golden rule

• Calculate cross section for 2 → 2 scattering in the center of mass and laboratory frames
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Cross section



Cross section

• In time 𝛿𝑡 a particle of type 𝑎 traverses a region containing 𝛿𝑁 = 𝑛! 𝑣" + 𝑣! 𝐴𝛿𝑡 particles of type 𝑏

• Interaction probability obtained from the effective cross-sectional area occupied by 𝑛! 𝑣" + 𝑣! 𝐴𝛿𝑡 

particles of type 𝑏:

• ⟹ rate per particle 𝑎 is 𝑟" =
#$
#%
= 𝑛!𝑣𝜎
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• Consider a single particle of type 𝑎 with velocity 𝑣", traversing a 

region of area 𝐴 containing 𝑛! particles of type 𝑏 per unit volume

𝛿𝑃 =
𝛿𝑁𝜎
𝐴

=
𝑛! 𝑣" + 𝑣! 𝐴𝛿𝑡𝜎

𝐴
= 𝑛!𝑣𝛿𝑡𝜎	 𝑣 = (𝑣" + 𝑣!)	



Cross section

• Consider a volume 𝑉, where the total reaction rate, R, is

• i.e. reaction rate = flux × number of target particles × cross section
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𝑅 = 𝑛!𝑣𝜎 ⋅ 𝑛"𝑉 = 𝑛!𝑉 𝑛"𝑣 𝜎 = 𝑁!𝜙"𝜎



Cross section definition

• The “cross section”, 𝜎, can be thought of as the effective cross-sectional area representing the size of the target object that 

the incoming particles must hit for the interaction to occur

• It is a measure of the probability of the interaction

• In general, this has nothing to do with the physical size of the target although there are exceptions, e.g. neutron absorption

σ =
number	of	interactions	per	unit	time	per	target

incident	6lux

Incident flux = number of incident particles/unit area/unit time 
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Differential cross section

dσ
dΩ =

number	of	interactions	per	unit	time	per	target	into	a	solid	angle	dΩ
incident	6lux

integrate over all 
other particles 𝜎 = ;

d𝜎
𝑑Ω𝑑Ω

𝑑Ω = 𝑑 cos𝜃 𝑑𝜙
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Cross section calculation

• Consider scattering process 1 + 2 → 3 + 4

• Start from Fermi’s Golden Rule:

• Here 𝑇&' is the transition matrix for a normalization of 1 particle per unit volume

• Rate/Volume = (flux of 1) × (number density of 2) ×𝜎 = 𝑛( 𝑣( + 𝑣) 𝑛)𝜎

• For 1 target particle per unit volume, the rate is: 𝑣( + 𝑣) 𝜎 ⟹ 𝜎 =
*!"

+#,+$
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Γ!" = 2𝜋 #; 𝑇!"
$𝛿 𝐸% + 𝐸$ − 𝐸& − 𝐸# 𝛿& 𝑝% + 𝑝$ − 𝑝& − 𝑝#

𝑑&𝑝&
2𝜋 &

𝑑&𝑝#
2𝜋 &

(𝟏)

𝜎 =
2𝜋 #

𝑣% + 𝑣$
; 𝑇!"

$𝛿 𝐸% + 𝐸$ − 𝐸& − 𝐸# 𝛿& 𝑝% + 𝑝$ − 𝑝& − 𝑝#
𝑑&𝑝&
2𝜋 &

𝑑&𝑝#
2𝜋 & (𝟐)

These are not Lorentz-invariant terms



Cross section calculation

• To obtain Lorentz-invariant form we start by using wave functions normalised to 2𝐸 particles per unit 

volume: Ψ- = 2𝐸	Ψ

• Again define Lorentz-invariant matrix element 𝑀&' = 2𝐸(2𝐸)2𝐸.2𝐸/ 𝑇&'

• The integral is now written in Lorentz-invariant form

• The quantity 𝐹 = 2𝐸(2𝐸) 𝑣( + 𝑣)  can be written in terms of a scalar product of 4-vectors and is also LI

• ⟹ the cross section is a Lorentz invariant quantity 9

𝜎 =
2𝜋 '$

2𝐸%2𝐸$ 𝑣% + 𝑣$
; 𝑀!"

$𝛿 𝐸% + 𝐸$ − 𝐸& − 𝐸# 𝛿& 𝑝% + 𝑝$ − 𝑝& − 𝑝#
𝑑&𝑝&
2𝐸&

𝑑&𝑝#
2𝐸#

(𝟑)

𝐹 = 4 (𝑝%
(𝑝$,() 	− 𝑚%

$𝑚$
$ (𝟒)



Two special cases of Lorentz-invariant flux

1. Center-of-Mass frame (CoM):

2. Target particle (particle 2) at rest:
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𝐹 = 4𝐸%𝐸$ 𝑣% + 𝑣$  
    = 4𝐸%𝐸$

*∗

+"
+ *∗

+#
  

    = 4𝑝∗ 𝐸$ + 𝐸%   
    = 4𝑝∗ 𝑠 

𝐹 = 4𝐸%𝐸$ 𝑣% + 𝑣$  
    = 4𝐸%𝑚$𝑣%
    = #+"-# *"

+"
    = 4𝑚$ 𝑝%  



𝟐 → 𝟐 body scattering in CoM frame

• We will apply the Lorentz-invariant formula for the interaction cross section to the most common cases

• 2 → 2 body scattering in the CoM frame:

• We can use 𝑝( + 𝑝) = 0 and 𝐸( + 𝐸) = 𝑠
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𝜎 =
2𝜋 '$

2𝐸%2𝐸$ 𝑣% + 𝑣$
; 𝑀!"

$𝛿 𝐸% + 𝐸$ − 𝐸& − 𝐸# 𝛿& 𝑝% + 𝑝$ − 𝑝& − 𝑝#
𝑑&𝑝&
2𝐸&

𝑑&𝑝#
2𝐸#

(𝟓)

𝜎 =
2𝜋 '$

4 𝑝" 𝑠
; 𝑀!"

$𝛿 𝑠 − 𝐸& − 𝐸# 𝛿& 𝑝& + 𝑝#
𝑑&𝑝&
2𝐸&

𝑑&𝑝#
2𝐸#

(𝟔)



𝟐 → 𝟐 body scattering in CoM frame

• The integral is exactly the same as in the particle decay calculation but with 𝑚' replaced by 𝑠

• 2 → 2 body scattering in the CoM frame:
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𝜎 =
2𝜋 '$

4 𝑝" 𝑠
𝑝!
4 𝑠

; 𝑀!"
$ 𝑑Ω∗

𝜎 =
1

64𝜋$𝑠
𝑝!∗

𝑝"∗
; 𝑀!"

$ 𝑑Ω∗ (𝟕)



𝟐 → 𝟐 body scattering in CoM frame

• Elastic scattering: 𝑝'∗ = 𝑝&∗

• For calculating the total Lorentz-invariant cross section, the result from the previous page is sufficient

• not so useful for computing the differential cross section in a rest frame other than CoM

• 𝑑Ω∗ = 𝑑 𝑐𝑜𝑠𝜃∗ 𝑑𝜙∗ refers to the angles in CoM frame

• We would need to find a Lorentz-invariant expression for 𝑑𝜎
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𝜎./01234 =
1

64𝜋$𝑠
; 𝑀!"

$ 𝑑Ω∗ (𝟖)

𝑑𝜎 =
1

64𝜋$𝑠
𝑝!∗

𝑝"∗
𝑀!"

$𝑑Ω∗ (𝟗)



𝟐 → 𝟐 body scattering in CoM frame

• Express 𝑑Ω∗ in terms of the Mandelstam 𝑡:

• 𝑡 = 𝑞$ = 𝑝% − 𝑝& $ = 𝑚%
$ +𝑚$

$ − 2𝑝% ⋅ 𝑝&

• In CoM frame:

• 𝑝%
∗' = 𝐸%∗, 0,0, 𝑝%∗ 	 , 𝑝&

∗' = 𝐸&∗, 𝑝&∗ sin𝜃∗, 0, 𝑝&∗ cos𝜃∗	

• 𝑝%
∗' ⋅ 𝑝&

∗' = 𝐸%∗𝐸&∗ − 𝑝%∗ 𝑝&∗ cos𝜃∗

• 𝑡 = 𝑚%
$ +𝑚$

$ − 2𝐸%∗𝐸&∗ + 2 𝑝%∗ 𝑝&∗ cos𝜃∗

• ⟹ 𝑑𝑡 = 2 𝑝(∗ 𝑝.∗ 𝑑 cos𝜃∗

• dΩ∗ = 𝑑 cos	𝜃∗ 𝑑𝜙∗ = #%#1∗

) 2#∗ 2&∗
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𝑑𝜎 =
1

128𝜋$𝑠 𝑝%∗
$ 𝑀!"

$𝑑𝑡𝑑𝜙∗ (𝟏𝟎)



𝟐 → 𝟐 body scattering in CoM frame
• Finally, integrating over 𝑑𝜙∗(assuming no 𝜙∗ dependence on 𝑀&'

)

• All quantities at Lorentz-invariant and therefore it applies to any rest frame

• 𝑝%∗ 	is	constant	fixed	by	energy-momentum	conservation

• 𝑝%∗
$
= %

()
𝑠	 − 𝑚% +𝑚$

$ 𝑠 − 𝑚% −𝑚$
$

• Example	of	how	to	use	𝑑𝜎/𝑑𝑡:	consider	elastic	scattering	in	the	lab.	frame	where	we	can	neglect	the	mass	of	

the	incoming	particle	(e.g.	electron	or	neutrino	scattering): 𝑝(∗
)
= 𝑠 −𝑚)

) )/(4𝑠)
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𝑑𝜎
𝑑𝑡 =

1

64𝜋	𝑠 𝑝%∗
$ 𝑀!"

$

(𝟏𝟏)

𝑑𝜎
𝑑𝑡

=
1

16𝜋 𝑠 − 𝑚K
K K 𝑀!"

$

(𝟏𝟐)



𝟐 → 𝟐 body scattering in laboratory frame

• The other commonly occurring case is scattering from a fixed target in a laboratory frame (e.g electron-

proton scattering)

• Take the case of elastic scattering at high energy where the mass of the incoming particles can be 

neglected: 𝑚( = 𝑚. = 0,𝑚) = 𝑚/ = 𝑀

• Express the cross section in terms of the scattering angle of the 𝑒3: 𝑑Ω = 2𝜋𝑑 cos𝜃
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𝑑𝜎
𝑑Ω

=
𝑑𝜎
d𝑡

𝑑𝑡
𝑑Ω

=
1
2𝜋

𝑑𝑡
𝑑 cos𝜃

𝑑𝜎
𝑑𝑡 (𝟏𝟑)



𝟐 → 𝟐 body scattering in laboratory frame

• Four-momenta of the particles

• 𝑝% = 𝐸%, 0, 0, 𝐸%

• 𝑝$ = 𝑀, 0, 0,0

• 𝑝& = 𝐸&, 𝐸&sin𝜃, 0, 𝐸&co𝑠𝜃

• 𝑝( = 𝐸(, 𝑝(

• ⟹ 𝑡 = 𝑝% − 𝑝& $ = −2𝑝%𝑝& = −2𝐸%𝐸& 1 − cos 𝜃

• From (𝐸, 𝑝⃗) conservation 𝑝( + 𝑝) = 𝑝. + 𝑝/ we can express 𝑡 in terms of 𝑝) and 𝑝/

• 𝑡 = 𝑝$ − 𝑝( $ = 2𝑀$ − 2𝑀𝐸( = −2𝑀 𝑀 − 𝐸( = −2𝑀(𝐸% − 𝐸&)

• 𝐸( is constant (the energy of the incoming particle):
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𝑑𝑡
𝑑 cos𝜃 = 2𝑀

𝑑𝐸&
𝑑 cos𝜃 (𝟏𝟒)



𝟐 → 𝟐 body scattering in laboratory frame

• Equating the two expressions for 𝑡 we get

• 𝐸& =
*!+

+,*!-*!./01

• #4&
# 5678

= 4#$9
9,4#34#5678 $ = 𝐸()𝑀

4&
4#9

)
= 4&$

9

• Using 𝑠 = 𝑝( + 𝑝) ) = 𝑀) + 2𝑝( ⋅ 𝑝) = 𝑀) + 2𝑀𝐸(, as 𝑝() = 0, gives 𝑠 − 𝑀) = 2𝑀𝐸(
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𝑑𝜎
𝑑Ω

=
1
2𝜋

𝑑𝑡
𝑑 cos𝜃

𝑑𝜎
𝑑𝑡

=
1
2𝜋

2𝑀
𝐸&$

𝑀
𝑑𝜎
𝑑𝑡

=
𝐸&$

𝜋
𝑑𝜎
𝑑𝑡

=
𝐸&$

16𝜋$ 𝑠 − 𝑀$ $ 𝑀!"
$ (𝟏𝟓)

𝑑𝜎
𝑑Ω

=
1

64𝜋$
𝐸&
𝑀𝐸%

$
𝑀!"

$ (𝟏𝟔)(in the limit of 𝑚% → 0)



𝟐 → 𝟐 body scattering in laboratory frame

• Express 𝐸. as a function of 𝜃: 𝐸. =
94#

9,4# (35678

• General form of 2 → 2 body scattering in the lab frame in case the mass 𝑚( can`t be neglected

• There is only one independent variable: the angle 𝜃, from conservation of energy:
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𝑑𝜎
𝑑Ω

=
1

64𝜋$
1

𝑀 + 𝐸% 1 − cos𝜃

$
𝑀!"

$ (𝟏𝟕)

𝑑𝜎
𝑑Ω =

1
64𝜋$

1
𝑝% 𝑚%

𝑝& $

𝑝& 𝐸% +𝑚$ − 𝐸& 𝑝% cos𝜃
𝑀!"

$ (𝟏𝟖)

(𝐸%+𝑚$) = 𝑝& $ +𝑚&
$ + 𝑝% $ + 𝑝& $ − 2 𝑝% 𝑝& cos𝜃 + 𝑚(

$



Summary
• We used a Lorentz-invariant formulation of Fermi’s golden rule to derive decay rates and cross sections

• Expressed in the Lorentz-invariant Matrix Element (wave-functions normalised to 2𝐸/unit volume) 

• Particle decay width:

• Scattering cross section in CoM frame:
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Γ =
𝑝⃗∗

32𝜋K𝑚T
KE 𝑀UT

K
𝑑Ω (𝟏𝟗)

𝜎 =
1

64𝜋K𝑠
𝑝U

∗

𝑝T
∗ E 𝑀UT

K
𝑑Ω∗ (𝟐𝟎)

𝑝∗ = %
$2"

𝑚3
$ − 𝑚% +𝑚$

$ 𝑚3
$ − 𝑚% −𝑚$

$ (function of the mass of the particles)



Summary
• Invariant differential cross section valid in all frames:

• Differential cross section in the lab. frame 𝑚( = 0 :

• Differential cross section in the lab. frame 𝑚( ≠ 0 :
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𝑝3∗
$
=
1
4𝑠 𝑠	 − 𝑚% +𝑚$

$ 𝑠 − 𝑚% −𝑚$
$

𝑑𝜎
𝑑𝑡 =

1

64𝜋	𝑠 𝑝"
∗ $; 𝑀!"

$

(𝟐𝟏)

𝑑𝜎
dΩ

=
1

64𝜋$
𝐸&
𝑀𝐸%

$
𝑀!"

$ ⟺
𝑑𝜎
dΩ

=
1

64𝜋$
1

𝑀 + 𝐸% 1 − cos𝜃

$
𝑀!"

$
(𝟐𝟐)

𝑑𝜎
dΩ

=
1

64𝜋$
1

𝑝% 𝑚%

𝑝& $

𝑝& (𝐸%+𝑚$) − 𝐸& 𝑝% cos𝜃
𝑀!"

$
(𝟐𝟑)

(𝐸'+𝑚() = 𝑝) ( +𝑚)
( + 𝑝' ( + 𝑝) ( − 2 𝑝' 𝑝) cos𝜃 + 𝑚*

(



Examples: relativistic Rutherford cross section
• Need to get a differential cross section in the lab frame with a massless incident particle 𝑀 ≫ 𝐸( (Eq. 22)

• using

• Hamiltonian for a Coulomb potential: e𝐻 = 𝑒𝜙 𝑥

• Initial and final state wave function are plane waves: | ⟩Ψ' = 𝑒3'2#⋅;, | jΨ& = 𝑒3'2&⋅;

• Matrix element 𝑇&':
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𝑑𝜎
dΩ

=
1

64𝜋$	𝑀$ 𝑀!"
$ (𝟐𝟒)

𝑀!"
$ = 2𝐸% ⋅ 2𝑀 ⋅ 2𝐸& ⋅ 2𝑀 𝑇!"

$
(𝟐𝟓)

⟹
𝑑𝜎
dΩ =

16𝑀$𝐸%𝐸&
64𝜋$	𝑀$ 𝑇!"

$ =
𝐸$

2𝜋 $ 𝑇!"
$ (𝟐𝟔)

𝑇!" = Ψ! W𝐻 Ψ" = ;𝑒"*4⋅C 𝑒𝜙 𝑥 𝑒'"*"⋅C𝑑&𝑥 (𝟐𝟕)



Examples: relativistic Rutherford cross section
• Define momentum transfer as 𝑞 = 𝑝. − 𝑝(

• use

• From Poisson equation: ∇)𝜙 𝑥 = −𝜌 𝑥 , where 𝜌 𝑥 = 𝑍𝑒𝑓 𝑥  is a static potential with a normalisation 

condition ∫𝑓 𝑥 𝑑.𝑥 = 1
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𝑒"D⋅C = − %
D # ⋅ ∇$𝑒'"D⋅C and ∫ 𝑢∇$𝑣 − 𝑣∇$𝑢 𝑑&𝑥 = 0 (Green’s theorem) (𝟐𝟗)

𝑇!" = −
𝑒
𝑞 $; ∇$𝜙 𝑥 𝑒'"D⋅C 𝑑&𝑥 (𝟑𝟎)

𝑇!" = Ψ! W𝐻 Ψ" = 𝑒;𝜙 𝑥 𝑒"D⋅C𝑑&𝑥 (𝟐𝟖)

𝑇!" =
4𝜋𝛼𝑍
𝑞 $ ;𝑓 𝑥 𝑒'"D⋅C 𝑑&𝑥 (𝟑𝟏)



Examples: relativistic Rutherford cross section
• Definition: 𝐹 𝑞 = ∫𝑓 𝑥 𝑒3'<⋅; 𝑑.𝑥 is the Fourier transformation of the charge function 𝑓 𝑥 , called also 

a Form Factor (FF) of the charge distribution

• The FF contains all the information about the spatial distribution of the charge of the studied object

• In our case we replace it with a delta function 𝐹 𝑞 = 1

• This gives for the matrix element simply:

• So the Rutherford cross section becomes:
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𝑇!" =
4𝜋𝛼𝑍
𝑞 $ (𝟑𝟐)

𝑑𝜎
dΩ =

𝐸$

2𝜋 $
4𝜋𝛼𝑍
𝑞 $

$
=
4𝑍$𝛼$𝐸$

𝑞 #
(𝟑𝟑)



Examples: relativistic Rutherford cross section

• Quantum Field theory: the electron interacts with a nucleus (charge = 𝑍𝑒) via the exchange of a photon

• photon momentum: 𝑞 = 𝑝 − 𝑝5

• de Broglie wavelength: 𝜆 = 1/ 𝑞

• If 𝜆 is large, the internal structure of the nucleus can not be resolved and can be considered as a point-

like object (that is what we assumed so far in our calculations)
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Particle accelerators: motivations

• Accelerators serve as “microscopes”

• 𝑞 = 1	GeV	 ⟹ 𝜆 ≈ 1.2×10-%6	m	 − size of a proton

• 𝑞 = 10&	GeV	 ⟹ 𝜆 ≈ 1.2×10-%7	m	 − size of a proton substructure (e.g. quarks)

• ⟹ accelerators allow us to look for the substructure of particles

• Types of operation modes:

• fixed target of mass 𝑚, beam with energy 𝐸: 𝑠 ≈ 2𝑚𝐸

• collider with two beams of energy 𝐸: 𝑠 = 2𝐸

• Example: collider with two 22	GeV	(1	TeV) beams gives the same center-of-mass energy as a fixed 

target with a beam of 1	TeV	(10.	TeV)

• When looking for massive particles produced in the interactions, aim for the highest energy possible 

and the collider mode is the more appropriate one
26



Particle accelerators: luminosity

• Luminosity ℒ  is the exposure of the target (beam) to scattering (collision) per unit time and unit area

• Fixed target experiments

• ℒ = _lux×number	of	scattering	centers = Φ8×𝑁9 = 𝑛8×𝑣8×𝑁9

• Colliding beams

• ℒ = :#×:$
<

𝑏𝑓, where 𝐴 = 4𝜋𝜎=𝜎>

• here 𝑛3 is the number of particles per bunch, 𝑏 is the number of bunches, 𝑓 is the frequency of the orbit

• typical beam size of the LHC 𝜎= ≈ 𝜎> ≈ 15𝜇m

• The number of produced events for a process with cross section 𝜎 is:

27

𝑁 = ℒklm×𝜎, 	 ℒklm = Eℒ	𝑑𝑡



LHC: instantaneous luminosity ℒ

28



LHC: integrated luminosity 𝓛𝐢𝐧𝐭
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LHC: example production cross section

• 𝑁22 = ℒ=>?σ@=>AB = 20 ⋅ 100 ⋅ 10() with	σ@=>AB = 100𝑚𝑏  cross section at 13.6	TeV

• 𝑊 boson (leptonic decays): 63000 pb

• 𝑍 boson: 𝑍 → 𝜇𝜇: 2103 pb

• 𝑡 ̅𝑡: 920 pb

• gluon fusion Higgs production: 53 pb

• 𝑡 ̅𝑡𝐻: 600 fb

• 𝐻𝐻: 34 fb

• How many given interactions did LHC produce in 2022?

• assume ℒ = 20fb-%?

30



Summary of Lecture 5

Main learning outcomes

• How to deal with kinematics of cross sections

• The fundamental particle physics is in the matrix element

• The above equations are the basis for all calculations that follow
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Additional slides: Dirac 𝛿 −function
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• In the relativistic formulation of decay rates and cross sections we will make use of the Dirac δ 

function: “infinitely narrow spike of unit area”

E
rs

s
𝛿 𝑥 − 𝑎 𝑑𝑥 = 1

E
rs

s
𝑓 𝑥 𝛿 𝑥 − 𝑎 𝑑𝑥 = 𝑓 𝑎

• Any function with the above properties can represent 𝛿 𝑥 , e.g.:

𝛿 𝑥 = lim
t→u

1
2𝜋𝜎

𝑒r
v!
Kt!

Infinitesimally narrow Gaussian



Additional slides: Dirac 𝛿 −function of a function
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• An expression for the 𝛿 −function of a function 𝛿 𝑓 𝑥 :

• start from the definition of a 𝛿 −function:

E
x"

x!
𝛿 𝑦 𝑑𝑦 = W1	 if	yy < 0 < yK

0	 otherwise

E
v"

v!
𝛿 𝑓 𝑥

𝑑𝑓
𝑑𝑥 𝑑𝑥 = W1	 𝑖𝑓	𝑥y < 0 < 𝑥K

0	 otherwise

• Now express in terms of 𝑦 = 𝑓 𝑥 , where 𝑓 𝑥C = 0 and change variables



Additional slides: Dirac 𝛿 −function of a function
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• From the properties of a 𝛿 −function (i.e. only non-zero at 𝑥C) 

𝑑𝑓
𝑑𝑥

E
v"

v!
𝛿 𝑓 𝑥 𝑑𝑥 = W1	 𝑖𝑓	𝑥y < 0 < 𝑥K

0	 otherwise

• Rearranging and expressing RHS as a 𝛿 −function

E
v"

v!
𝛿 𝑓 𝑥 𝑑𝑥 =

1
𝑑𝑓
𝑑𝑥 v#

E
v"

v!
𝛿 𝑥 − 𝑥u 𝑑𝑥 ⟹ 𝛿 𝑓 𝑥 =

𝑑𝑓
𝑑𝑥 v#

ry
𝛿 𝑥 − 𝑥u


